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Policy Adjustment in a Dynamic Economic Game
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Making sequential decisions to harvest rewards is a notoriously difficult problem. One difficulty is that the real world is not
stationary and the reward expected from a contemplated action may depend in complex ways on the history of an animal'’s
choices. Previous functional neuroimaging work combined with principled models has detected brain responses that correlate
with computations thought to guide simple learning and action choice. Those works generally employed instrumental
conditioning tasks with fixed action-reward contingencies. For real-world learning problems, the history of reward-harvesting
choices can change the likelihood of rewards collected by the same choices in the near-term future. We used functional MRI to
probe brain and behavioral responses in a continuous decision-making task where reward contingency is a function of both
a subject’s immediate choice and his choice history. In these more complex tasks, we demonstrated that a simple actor-critic
model can account for both the subjects’ behavioral and brain responses, and identified a reward prediction error signal in
ventral striatal structures active during these non-stationary decision tasks. However, a sudden introduction of new reward
structures engages more complex control circuitry in the prefrontal cortex (inferior frontal gyrus and anterior insula) and is not
captured by a simple actor-critic model. Taken together, these results extend our knowledge of reward-learning signals into
more complex, history-dependent choice tasks. They also highlight the important interplay between striatum and prefrontal
cortex as decision-makers respond to the strategic demands imposed by non-stationary reward environments more
reminiscent of real-world tasks.
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INTRODUCTION

Knowing how to behave adaptively reduces, in most circum-
stances, to knowing the consequences of available actions, or,
how much reward each action will garner on average. Practically
speaking, this is a daunting problem. This is particularly so since
the reward associated with different actions depends on a wide
variety of factors such as one’s history of actions, the behavior of
competitors, and even stochastic changes in the environment
through time. For example, a bee’s decision to harvest nectar
from one flower has the inevitable consequence of decreasing the
returns from that flower and increasing the returns from non-
sampled flowers (the nectar levels can recover). In foraging
theory, if the amount of available prey (i.e. reward) is greater
than the appetite of the predators then the food supply will
increase [1]. Sudden unexpected shocks can also have significant
effects on the costs and benefits associated with different actions.
In general, the reward available in the future depends in complex
ways on a possibly overwhelming variety of environmental
factors [2-3].

Despite this apparent complexity of action-reward relationships
presented by the world, most work in neuroscience and psychology
has focused on fixed action-reward dependencies and studied
the change of action-reward contingencies in block design
paradigms such as Wisconsin Card-sorting task (WCS'T), reversal
learning paradigms and extinction paradigm where in certain
block of trials the action-reward contingency is fixed [4—6]. This
trend persists in recent neuroimaging studies in humans, in which
operant learning paradigms have been studied extensively [7-16,
but see 17]. These studies suggested that brain areas associated
with the mesolimbic dopamine system (i.e. striatal structures,
prefrontal cortex) play an important role in reward learning and
action selection [18-21].

In this paper, we study changes in action selection reflective of
changes in reward expectation in a series of tasks in which earned
reward depends in complex ways on previous actions. The
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rationale of this study was to fit each subject’s behavior through
time with a continuous error-based learning model (e.g. actor-
critic model) [5,9-14] to predict subject’s consequent action
selection and correlated brain activity in a series of tasks where
reward contingency is a function of both subject’s immediate
choice and choice history. We then asked how subject responded
to unexpectedly introduced new reward structures since subjects
are required to develop different strategies for these reward
structures and usually the adjustment of strategies correspond to
increasingly exploratory actions by the subjects; hence they would
give us opportunities to observe the interplay between control
signals in striatum and prefrontal cortex during the switches of
periods when action-reward dependencies vary slowly through
time and periods where subject’s behavior becomes more variable
and depends less on previous experience.

Academic Editor: P% | Zak, Cla, emon G acL ae UnI'85I Uni.Led S;aﬁ of
Ame.ica
Received Noyembe, 8, 2006; Accepted Noyembe, 18, 2006; Published Decembe,
20, 2006

Copyrlght © 2006 Li e al. Thi § an Ogn-acces a, |c|e dk. |bv ed nde, . he

e,ms of . he C.ea I'e Commorg A Q ion Licens e, |/ hich _,e mls ,es Jic ed
;e d; AR, ion, and e_,,oq C|on in an medj m, _,,o'lded *he o |g|na| 1
and;o? ceaecedled

Funding: Thi w 0.ky & f nded b he Kane Famil F nda\ion (P.R.M.), NINDS
g.an NS-045790 (P.R.M.) and NIDA g an DA-11723 (P.RM.).

Competing Interests: The 3. hos hage decla.ed ha no com,,elng ines&.s
L 5

* To whom correspondence should be addressed. E-mail: ,ead@bcmlmc.ec&

SThe;eqr.h05 con ,ibp.edie- aII .o.h'; v o.k.
® Current address: De_a, men. of Ps cholog P, |nce on Um'e51 P,ince.ton,
Ney Je;e Umed S as of Ame,ica”
Decembe, 2006 ksv e 1 el103



RESULTS

The experimental design and subjects’ performance in these tasks
has been described previously [9,22-23]. We reviewed subjects’
behavioral tendencies, and note that all of the subjects performed
in accord with these summaries on each task individually, and
switched behavioral strategies rapidly when the tasks were
switched in our current manipulation.

MS—RO task (Matching Shoulder—Rising Optimum)
In both the matching shoulders and rising optimum tasks, subjects
have a strong tendency to perform near the crossing point in the
reward functions (see Iigure 1B legend for detail). This can be
understood by considering how earned reward changes near the
crossing point. Assuming that subjects choose A at the crossing
point, the percent allocation to A (%A) will increase, resulting in
decreased subsequent earned reward for selecting A (Figure 1B).
Reward can be increased by switching to choice B, which also
decreases the percent allocation to A, returning subjects to the
crossing point. The converse sequence of events occurs if B is
mitially selected. As long as subjects tend to select in accord with
which choice is expected to produce the greatest immediate
reward (Herrnstein called this melioration, [3,24]), then they will
perform at the crossing point in the reward functions (~33%
allocation to A) in both the MS and RO tasks.

In the MS task, performing at the crossing point is the optimal
solution [9]. However, in the RO task it is grossly sub-optimal. If
subjects were to select button A on every choice in the RO task,
they would experience a temporary decrease in earned reward that
would subsequently reverse to produce the maximum average
return (Figure 1B). This optimal policy (selecting A only) is an
unstable equilibrium point in subjects’ action selection policy due
to the fact that at high allocation to A, choices to B produce
greater immediate reward (Figure 1C). In the MS—RO task,
subjects show evidence for both behavioral equilibria after the
reward structure switch. They began performing near the crossing
point, showing a temporary excursion to greater allocation to A
(%A), and then reverted again to performing near the crossing
point (Figure 2A).

FR—PR task (Flat return — Pseudorandom)
Regardless of the pattern of choices in the FR and PR tasks, the
average earned reward will be the same (Figure 1D, dot line;
Figure 2A). As in MS and RO, the FR reward structure possesses
a crossing point in the reward functions that acts as a stable
selection strategy (Figure 1D).

Subjects always performed the PR task immediately after the
FR task. Furthermore, we configured the reward returns in PR so
that the mean and variance in rewards that subjects experienced in
PR task were equal to what the subjects earned on the FR task
(Figure 1D). Unlike the FR task, reward in the PR paradigm was
randomly determined and was not dependent on the subjects’
choices (randomly drawn from a uniform distribution). Under
these conditions (PR), subjects tend to perform randomly, evenly
distributing their choices between A and B. The transition from
performing near the crossing point in the FR task (~40%
allocation to A) to equally distributing choice in the PR task
(~50% allocation to A) occurs at variable delays across subjects
(see below for discussion).

Reinforcement learning model of reward learning

Reward learning requires monitoring the expected reward for the
available actions (A and B), and biasing choices in favor of the
action with highest expected reward. We modeled this process
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using the two reinforcement learning models described above
(Figure 2B). The sigmoid model assumes that subjects tend to
select the choice associated with the greatest model weight (i.c.
more likely to selected A when w;>wp). Furthermore, the
probability that subjects select the choice with the greater
estimated weight is expected to scale with the difference in
weights (w,—wp), while the e-greedy method assumes a probability
of 1-¢/2 to the choice with bigger weight (w*). To test these
predictions, we calculated w,—wp at the time of every choice and
arranged choices in order of increasing weight difference for the
sigmoid action selection method. We then compared the observed
probability of selecting A (P,) by subjects with the probability
predicted by the logistic decision function (Green, Figure 2B). For
all 4 reward structures, this analysis revealed a strong correlation
between observed and estimated probabilities of selecting choice A
MS: r=0.97, RO: r=0.99, FR: r=0.97, PR: r =0.97). For the &-
greedy method, we assigned individual subject’s probability to the
choice associated with bigger weight to be 1-¢/2 and probability
for the other choice is thus &/2. We then arranged choices in order
of increasing probability of choosing a specific choice (A or B) and
then compared the observed probability of selecting A (Py) by
subjects with that predicted by the e-greedy decision function
(Pink, Figure 2B). This analysis revealed a similar fitting as the
softmax action selection method (MS: r=0.97, RO: r=0.99, FR:
r=0.95, PR: r=0.99) both in behavioral fitting and further neural
correlates mapping.

Neural correlates of prediction error

Reinforcement learning model states that learning signals (pre-
diction error) are used to update and monitor the value of choices.
In our experiment, we used prediction errors estimated from the
model and applied it as one of the regressors in a general linear
model (GLM) to imaging data. We find that the prediction error
signal estimated from two methods (softmax action selection and é-
greedy) correlates with activity in the ventral striatum in both of
our tasks with different reward structures (Figure 3).

Correlation with reward prediction error
The reinforcement learning model fits to the behavioral data
provide estimates of the reward prediction error experienced after
every choice. These prediction errors were used to produce
regressors that were further fit to subjects’ functional imaging data.
In the FR—PR task, the BOLD signal in regions of the ventral
putamen correlated significantly with estimated prediction error
signals (p<<0.005, uncorrected) using both methods (softmax and &-
greedy). However, at a threshold of p<<0.005 (uncorrected), we find
that no areas other than visual cortex are significantly correlated
with estimated prediction error signals in the matching shoulders to
rising optimum (MS—RO) task. We reasoned that the lack of
correlation with estimated prediction error in this task may result
from the fact that the large negative prediction error and prolonged
recovery phase produced by the change in reward paradigm
(Figure 2A, Figure 3, blue and red traces) may dominate the overall
fitting. To test this, we excluded the period of time encompassing
the first 25 choices following the onset and switch in reward
structures from the analysis. With this correction, BOLD signals in
ventral putamen correlated significantly with estimated prediction
error signals from both methods (p<<0.001, uncorrected). This result
suggests BOLD signals in ventral striatum (putamen) can be
predicted by prediction errors (PE) when action-reward dependen-
cies vary slowly through time where PE fluctuates around 0 (Table 1,
Figure 3), but not in phases where subject’s behavior becomes more
variable and is less dependent on previous experience.
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These results are further confirmed by fitting our learning
model to each of the 4 sub-tasks (MS, RO, FR, and PR)
independently. Prediction errors generated in this manner,
omitting periods immediate after the introduction of new reward
structures (25 trials, Figure S3, red and blue), correlate with
BOLD signals in the same area of the ventral striatum in each of
the four sub-tasks (Figure S3). This indicates that, when behavior is
relatively stable, the ventral striatum is engaged to dynamically
track ongoing reward estimation errors. Overall, these results
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correspond well to a recent report that prediction error-like signals
occur in the striatum in an operant learning paradigm [12].

Brain activity during periods of unexpected reward

structure switches

We hypothesized that the unexpected salient events can possibly
act to indicate possible changes in reward contingency or reward
paradigm and they may trigger further exploratory behaviors by
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Areas of activation positively related to prediction error (MS— RO task, logistic fitting)

peak MNI

region of activation T z X y z voxels
: lef  amen 3.65 340 —12 8 1
,igh.‘ 2,.2men 4.28 3.90 24 12 —4 10
occi_,j,‘al 4.39 3.99 4 —88 20 71
Pa,ahi_%c‘)cam _,gl 9 s 4.86 433 24 0 —-12 5
Infeio, _,;f‘],ieLaI 0.8 3.76 348 —-32 —44 44 5
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peak MNI
region of activation T z X y z voxels
 lef 4 amen 377 350 —16 8 —4 7
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¢ doi:10.1371/jq, ,nal.,,g‘)ne.00001 03, 002

subjects. There were three time points in the behavioral tasks that
reliably signaled significant changes in reward paradigms which
can also be confirmed from deviated prediction error signals
(Figure 3). We consider brain areas that are activated in all of these
instances as involved in abstract rules monitoring and detection
and their activities can be triggered by salient events (dramatic
immediate reward change in our case, [25-26]) and further help to
promote more exploratory behaviors by subjects in order to
determine more optimal strategies for current reward structure.
We identified these areas using a conjunction analysis (intersection
of areas significantly correlated at p<<0.001l, uncorrected for
multiple comparisons, in each instance, [27]). The three points
include the beginning of both tasks (first choices in MS and first
choices in FR), and the instant when the task paradigm switched
from MS to RO. In the MS—RO task, subjects invariably played
near the crossing point in the MS task (Figure S1), which resulted
in a significant (60%) drop in earned reward when the task
switched to RO reward structure. This change caused subjects to
alter (even if briefly) behavioral strategy (Figure S2).

Three brain areas were identified by the conjunction analysis
including the bilateral anterior insula and a region in the inferior

Table 2.

frontal gyrus (IFG) (See Table 2 for detailed description). The
region identified in the insula has been implicated in responding to
cognitive conflict and behavior inhibition [21,28]. The other
region we identified lies on the IFG and extends into the frontal
operculum (BA 44, Figure 4). This region has been identified
under conditions requiring increased attention and changes in
behavior [29].

Another time point in our experiment that might be associated
with exploration is the task switch in the FR—PR paradigm.
Subjects changed from performing near the crossing point (~40%
A%) in the FR task to random selecting behavior in the PR task
(~50% A%) (Figure S2). There are two differences between the
task switch in FR—-PR and MS—RO that underlic why we did
not include it in the conjunction analysis. First, in FR—PR,
subjects switch to a null behavioral strategy (random play). Thus it
is unclear to what degree subjects are exploring new behavioral
strategies as opposed to simply omitting strategic play. Secondly,
the reward structure switch in FR—PR task does not produce as
dramatic a signal of changed reward contingencies as in the
MS—RO paradigm. In MS—RO task, the bar height decreases
approximately 60% at the task switch. For FR—PR task, the mean

. Areas of activation positively related to onset and switch of reward structures

peak MNI
region of activation T zZ X y z voxels
: lef IFG 6.11 5.19 —48 28 21
,igh.L IFG 7.61 6.07 44 8 28 48
 lef ins, la 6.00 511 -32 24 4 28
S igh s, la 463 416 36 20 8 18
¢ lef 5 amen 5.83 5.00 -8 0 18
© ligh . amen 6.98 5.71 12 0 15
* midb,ain 6.47 541 —4 -28 —4 44
occi,,j,‘al 7.95 6.25 —32 —88 16 639
Regions w i h 15 0, g.ea e,significan yq ek w e.e iden ified_sing T- &5, _,‘<.0001 { nco,.ec ed).
. doi:10.137‘|/jo? ,nal._"c‘)ne.0000103.‘002
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and variance in reward were unchanged after the reward structure
switch. Subjects may therefore require more time to discover and
respond to the change in reward contingencies and the time for
each subject to discover and respond could vary across individuals.
This is further confirmed by the fact that reward prediction error
signal estimated from both of our models does not indicate any
significant changes during the switch from FR to PR reward
structure (Figure 3). Consistent with this, activity does increase in
the area of PFC identified by the conjunction analysis following
the switch in FR—PR. However, the amplitude is reduced and the
duration of activity is prolonged relative to MS—RO task. This is
the expected outcome were subjects to discover and respond to the
task switch at more delayed and variable times.

DISCUSSION

Using a continuous decision-making task with four different
dynamic reward structures underlying subjects’ action-outcome
contingencies, we found in this paper that differential involvement
of brain areas in action selection and learning during different time
periods of the task. Two model-based regression analyses showed
BOLD activities in the ventral striatal structure correlate with
prediction error signal. However, a sudden introduction of new
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reward structures engages more complex control circuitry in the
prefrontal cortex (inferior frontal gyrus and anterior insula) and is
not captured by a simple actor-critic model. Separately, these two
systems have been the subject of numerous investigations of
decision-making. The first of these systems, the ventral striatum, is
believed to be involved specifically in maintaining and updating
the expected reward value of actions. This is accomplished
through interactions with the mesolimbic dopamine system which
activates in accord with ongoing reward prediction error signals
[18]. In the striatum, dopamine is known to modulate synaptic
plasticity [19] allowing for the activity of these neurons to encode
action value [30]. Functional MRI studies have demonstrated that
the striatum is clearly involved in biasing action selection in accord
with current action values [13], and that activity in this structure
changes in accord with ongoing prediction errors [10,31-32]. Our
findings show that these results hold during periods of conditional
action-selection learning in each of the four different reward
structures when, presumably, the striatum is the primary de-
terminant of behavior. Our results distinguished from previous
studies by using different underlying reward functions originally
derived from Herrnstein’s matching law [3,22,24] that reward
associated with each choice depends not only on the current
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choice but also subject’s previous choice history, while most of the
previous studies adopted fixed action-reward contingencies para-
digms [11-14,33]. Animals have to face a non-stationary world
and the amount of reward expected from a contemplated action
depends in complex ways on the history of an animal’s choices.
This can dramatically change the likelihood of rewards collected
by the same choices in the near-term future, and our result
indicates similar neural correlates are required in reward-learning
tasks more reminiscent of real-world environment.

During periods where immediate reward return fluctuates
dramatically (at the beginnings of both tasks, and in the middle of
MS->RO task), activity in the striatum is not well captured by
reinforcement learning models, suggesting that the striatum is not
strongly involved in action selection during these periods. In these
periods, brain activity is increased in two areas of the prefrontal
cortex: in the inferior frontal gyrus as well as bilaterally in the
anterior insula. The insula has primarily been implicated as
responding to disgust, pain, and other aversive stimuli [34-36]. In
terms of decision-making tasks such as ours, the insula has also



26 axial slices (3.4 x3.4 x4 mm width) parallel to the AC-PC line.
Images were acquired with a repetition time (TR) of 2s, an echo
time (TE) of 40ms, and flip angle of 90°.

Experimental Task

Subjects lay supine with their head in the scanner bore and
observed the rear-projected computer screen via a 45° mirror
mounted to the head coil. Choices were registered using two MRI-
compatible button boxes. Selections to A were made by pressing
any button with the left hand and selections to B by pressing any
button with the right hand for half number of the subjects and in
the reversed pattern for the other half. After each selection, the
central reward bar obtained a new height dependent on earned
reward. Following this, the buttons (A and B) on the screen were
disabled and turned gray for 1.25 s. Subjects were instructed that
they could not make further selection until the buttons on the
screen turned back to normal color from gray.

Subjects engaged in two repeated play, two-alternative decision-
making tasks in which they were instructed to choose from one of
two actions (A or B) with the goal of obtaining and maintaining
maximum ecarned reward (Figure 1A; [8,23]). The central bar
height (reward) is controlled by two variables: 1) Current choice
made (A or B), if the subject chooses A, then the reward received
will be along the red line, otherwise, the reward will be on the blue
line; 2) Subject’ choice history: the percentage of choice “A” (%A)
selected in the past 20 choices. The initial %A value is set to be
50%. As task proceeds, the %A is updated (a 20-choice moving
window) as a result of each choice (A or B) subjects made. The
tasks were modified for use in fMRI by pacing the rate at which
choices are made to no faster than one every 1.25 s. The mean
reaction time was slightly less than 2 s. Each task required subject
to make 250 selections. After the first 125 selections, the reward
structure was switched (Figure 1B, C). Subjects were not instructed
that these switches would occur. In the first task, the reward
structure was initially defined by the matching shoulders (MS)
paradigm and was then switched to the rising optimum (RO)
reward paradigm (MS—RO task; Figure. 1C). The other task
began with the flat returns (FR) paradigm and was switched to
pseudo-random (PR) returns at the switch (FR—PR task;
Figure. 1D). In all reward paradigms except pseudo-random,
earned reward depended on two variables: (1) the subject’s choice
(A or B; corresponding to red and blue reward curves in Figure 1C,
D, respectively), and (2) the percent of the last 20 choices made to
choice A (%A, allocation to A; x-axis on plots in Figure. 1B, C, D).
Allocation to A was set to 50% at the beginning of both tasks.

Data Analysis

Imaging data was analyzed using SPM2 [50] and xjView (http://
people.hnl.bem.tme.edu/ cuixu/xjView/). Functional images were
realigned, corrected for slice timing, coregistered with a canonical
brain in MNI coordinates, resliced to 4x4x4mm and smoothed
with an 8mm FWHM Gaussian kernel prior to analysis.

The prediction error signal, d(¢), determined by fitting the
behavioral data, was used to produce a regressor through
convolution with a canonical hemodynamic response kernel. To
find brain voxels sensitive to changes in reward paradigm, we used
a regressor with a single hemodynamic response function offset to
the time of reward structure switch (beginning of each reward
structure).

Regressors were fit independently to data from each voxel in the
functional brain images using standard linear model methods. A
random effects analysis was conducted by performing one-sample
t-tests over best fitting beta amplitudes produced by linear model

fitting. Brain areas are considered significantly activated that are
composed of at least 5 contiguous voxels significant at p<<0.005
with peak significance in the cluster of at least p<<0.001.

Behavior Fitting-Modeling

Subjects” decision-making was modeled with a reinforcement
learning algorithm. We assume that subjects maintained in-
dependent estimates of the reward expected for each choice, A and
B, and updated these values based on experienced rewards. In
particular, we assume choice values (wy and wp) were updated
according to a Rescorla-Wagner learning algorithm.

We used two methods to assign probabilities to each choice: 1)
logistic method and 2) é-greedy method. In logistic method,
choices were assumed to be probabilistically related to choice
values according to a sigmoid function with slope m:

Mva (1)

PA(t) = emw/,(t) + emwlg(t) (1)

While in &-greedy method, one of the two alternative choices
will be assigned with probability 1-6/2 if the weight associated with
that choice is bigger than the other and the probability of choosing
the other choice is thus ¢/2. When the weights associated with two
choices are equal, then one choice will be randomly assigned with

probability 1-£/2, the other &/2.
P (t)=H(wq(t)—wp(t)) x (1—¢/2)+
H(wp(1) =wa(1)) * (¢/2);

Where H(x) is a Heaviside step function and defined by

)

0 x<0
H(x)=q¢1/2 x=0
1 x>0

In both methods, for each choice (denote the choice by *), the
reward experienced by the subject () was compared with the
current modeled weight value W*(t) to produce a prediction error

o)

o(t)y=r(t)—w.(?) 3)

The prediction error served as a learning signal that was used by
both methods to improve modeled action weights by an amount
governed by the learning rateh:

wo(t+ 1) =w. (£)+ 18(2); (4)

The quality of both model fittings was determined by how well



parameter fitting, fitting was initiated from 20 randomly de-
termined starting values and the best fit was taken across all final
parameter values. The learning rate was restricted to values
between 0 and 1; the sigmoid slope was restricted to positive values
and the greedy parameter (&) was restricted to values between 0 and
1.

SUPPORTING INFORMATION

Figure S1 Individual subject performance variability in both
tasks. These four panels represent how individual subject averagely
perform in 4 different reward structures (MS, RO, FR, PR).
Immediate reward subject receive from each choice they make
depends on two variables: 1) current decision (A or B, Red and
Blue trace correspondingly) and 2) the percentage of choice A
(%A) made over the past 20 trials (x-axis). Each subject’s average
behavior is represented by a triangle on each reward structure
plot. Most subject perform around the optimal strategy (cross point
of red and blue curve) in the MS task, while in RO task, subjects
tend to split along the %A and many subject were restricted to the
crossing point which is not the optimal strategy anymore. In FR
task, subjects were still slightly attracted by the crossing point while
in the PR task subjects were randomly distributed around the 50%
%A point.

Found at: doi:10.1371/journal.pone.0000103.s001 (1.44 MB TTF)

Figure S2 Various bechavioral responses subjects performed in
both tasks. Subjects quickly adjusted to the optimal strategy at the
beginning of both tasks (MS and FR). The switch from matching
shoulders (MS) to rising optimum (RO) reward structures was
signaled by a large decrease in immediate reward return (Fig. 2)
and could possibly trigger the more exploratory behavior in the
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